Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Natural language processing (NLP) has gained widespread adoption in the development of real-world applications. However, the black-box nature of neural networks in NLP applications poses a challenge when evaluating their performance, let alone ensuring it. Recent research has proposed testing techniques to enhance the trustworthiness of NLP-based applications. However, most existing works use a single, aggregated metric (i.e., accuracy) which is difficult for users to assess NLP model performance on fine-grained aspects, such as LCs. To address this limitation, we present ALiCT, an automated testing technique for validating NLP applications based on their LCs. ALiCT takes user-specified LCs as inputs and produces diverse test suite with test oracles for each of given LC. We evaluate ALiCT on two widely adopted NLP tasks, sentiment analysis and hate speech detection, in terms of diversity, effectiveness, and consistency. Using Self-BLEU and syntactic diversity metrics, our findings reveal that ALiCT generates test cases that are 190% and 2213% more diverse in semantics and syntax, respectively, compared to those produced by state-of-the-art techniques. In addition, ALiCT is capable of producing a larger number of NLP model failures in 22 out of 25 LCs over the two NLP applications.more » « less
-
While many real-world programs are shipped with configurations to enable/disable functionalities, fuzzers have mostly been applied to test single configurations of these programs. In this work, we first conduct an empirical study to understand how program configurations affect fuzzing performance. We find that limiting a campaign to a single configuration can result in failing to cover a significant amount of code. We also observe that different program configurations contribute differing amounts of code coverage, challenging the idea that each one can be efficiently fuzzed individually. Motivated by these two observations, we propose ConfigFuzz , which can fuzz configurations along with normal inputs. ConfigFuzz transforms the target program to encode its program options within part of the fuzzable input, so existing fuzzers’ mutation operators can be reused to fuzz program configurations. We instantiate ConfigFuzz on six configurable, common fuzzing targets, and integrate their executions in FuzzBench. In our evaluation, ConfigFuzz outperforms two baseline fuzzers in four targets, while the results are mixed in the other targets due to program size and configuration space. We also analyze the options fuzzed by ConfigFuzz and how they affect the performance.more » « less
-
Fuzz testing is an active area of research with proposed improvements published at a rapid pace. Such proposals are assessed empirically: Can they be shown to perform better than the status quo? Such an assessment requires a benchmark of target programs with well-identified, realistic bugs. To ease the construction of such a benchmark, this paper presents FIXREVERTER, a tool that automatically injects realistic bugs in a program. FIXREVERTER takes as input a bugfix pattern which contains both code syntax and semantic conditions. Any code site that matches the specified syntax is undone if the semantic conditions are satisfied, as checked by static analysis, thus (re)introducing a likely bug. This paper focuses on three bugfix patterns, which we call conditional-abort, conditional-execute, and conditional-assign, based on a study of fixes in a corpus of Common Vulnerabilities and Exposures (CVEs). Using FIXREVERTER we have built REVBUGBENCH, which consists of 10 programs into which we have injected nearly 8,000 bugs; the programs are taken from FuzzBench and Binutils, and represent common targets of fuzzing evaluations. We have integrated REVBUGBENCH into the FuzzBench service, and used it to evaluate five fuzzers. Fuzzing performance varies by fuzzer and program, as desired/expected. Overall, 219 unique bugs were reported, 19% of which were detected by just one fuzzer.more » « less
An official website of the United States government

Full Text Available